Implementasi Algoritme AES-256 pada Sistem Pemantauan Getaran Gempa Bumi Menggunakan Perangkat LoRa dan Antena Yagi Untuk Pengiriman Informasi Darurat yang Aman
DOI:
https://doi.org/10.56706/ik.v17i2.73Keywords:
AES, Gempa Bumi, LoRa, LOS, NLOS, RSSI, SensorAbstract
Teknologi pemantauan getaran gempa bumi masih terdapat kendala dalam pengumpulan data informasi seperti membutuhkan tenaga manusia dan waktu cukup lama. Salah satu teknologi getaran gempa yaitu sistem jaringan sensor nirkabel yang dapat mempermudah dalam pengukuran data lapangan serta memberikan suatu sistem deteksi gempa bumi. Dengan menggunakan media transmisi yang banyak diterapkan dalam jaringan sensor yaitu LoRa (Long Range) diharapkan prototype sistem pemantauan getaran gempa dapat mengatasi masalah yang terjadi. Pengujian dilakukan dengan dua skema yaitu sistem tanpa AES dan sitem dengan AES serta pengujian di dua kondisi yaitu LOS dan NLOS. Hasil pengujian jarak maksimal yang dicapai dalam berkomunikasi pada kondisi LOS adalah 9600 Meter sedangkan kondisi NLOS mencapai 6000 Meter. Hasil rata-rata nilai RSSI tertinggi pada jarak 500 Meter kondisi LOS tanpa AES adalah -88,8 dBm sedangkan nilai terendah pada jarak 6000 Meter kondisi NLOS dengan AES adalah -123,7 dBm.
References
BMKG, Katalog Gempabumi Signifikan dan Dirasakan. Jakarta: BMKG, 2018
J. F. Saputra, M. Rosmiati, and M. I. Sari, “Pembangunan Prototype Sistem Monitoring Getaran Gempa Menggunakan Sensor Module SW-420,” e-Proceding Appl. Sci., vol. 4, no. 3, pp. 2055–2068, 2018.
P. Boccadoro, B. Montaruli, and L. A. Grieco, “QuakeSense, a LoRa-compliant Earthquake Monitoring Open System,” Proc. - 2019 IEEE/ACM 23rd Int. Symp. Distrib. Simul. Real Time Appl. DS-RT 2019, pp. 1–8, 2019, doi: 10.1109/DS-RT47707.2019.8958675.
R. P. Centelles, F. Freitag, R. Meseguer, L. Navarro, S. F. Ochoa, and R. M. Santos, “A LoRa-Based Communication System for Coordinated Response in an Earthquake Aftermath,” Proceedings, vol. 31, no. 1, p. 73, 2019, doi: 10.3390/proceedings2019031073.
A. Lavric, “LoRa (long-range) high-density sensors for internet of things,” J. Sensors, vol. 2019, 2019, doi: 10.1155/2019/3502987.
L. Sciullo, F. Fossemó, A. Trotta, and M. Di Felice, “LOCATE: A LoRa-based mObile emergenCy mAnagement sysTEm,” 2018 IEEE Glob. Commun. Conf. GLOBECOM 2018 - Proc., pp. 1–7, 2018, doi: 10.1109/GLOCOM.2018.8647177.
P. Ragam and D. S. Nimaje, “Performance evaluation of LoRa LPWAN technology for IoT-based blast-induced ground vibration system,” J. Meas. Eng., vol. 7, no. 3, pp. 119–133, 2019, doi: 10.21595/jme.2019.20586.
M. Saari, A. Muzaffar Bin Baharudin, P. Sillberg, S. Hyrynsalmi, and W. Yan, “LoRa - A survey of recent research trends,” 2018 41st Int. Conv. Inf. Commun. Technol. Electron. Microelectron. MIPRO 2018 - Proc., pp. 872–877, 2018, doi: 10.23919/MIPRO.2018.8400161.
E. Aras, G. S. Ramachandran, P. Lawrence, and D. Hughes, “Exploring The Security Vulnerabilities of LoRa,” IEEE Int. Conf. Cybern., 2017, doi: 10.1109/CYBConf.2017.7985777.
A. Jamaluddin, N. N. Mohamed, and H. Hashim, “Securing RF communication using AES-256 symmetric encryption: A performance evaluation,” Int. J. Eng. Technol., vol. 7, no. 4, pp. 217–222, 2018, doi: 10.14419/ijet.v7i4.11.20810.
A. M. Abdullah, “Advanced Encryption Standard ( AES ) Algorithm to Encrypt and Decrypt Data,” Cryptogr. Netw. Secur., 2017.
S. Wadehra, S. Goel, and N. Sengar, “AES Algorithm : Encryption and Decryption,” Int. J. Trend Sci. Res. Dev. ( IJTSRD ), pp. 1075–1077, 2018.
M. Rizal, E. M. Zamzami, and M. Zarlis, “Cryptographic Symmetry Analysis with AES Algorithm for Safeguarding Data at Government Agencies,” Int. J. Inf. Syst. Technol., vol. 3, no. 1, pp. 131–139, 2019.
E. P. Nugroho, R. R. J. Putra, and I. M. Ramadhan, “SMS Authentication Code Generated by Advance Encryption Standard (AES) 256 bits Modification Algorithm and One Time Password (OTP) to Activate New Applicant Account,” Int. Conf. Sci. Inf. Technol., pp. 175–180, 2016.
“Semtech LoRa Technology Overview.” https://www.semtech.com (accessed Nov. 16, 2020).
A. Augustin, J. Yi, T. Clausen, and W. M. Townsley, “A Study of LoRa : Long Range & Low Power Networks for the Internet of Things,” J. Sensors, pp. 1–18, 2016, doi: 10.3390/s16091466.
S. Sagir, I. Kaya, C. Sisman, Y. Baltaci, and S. Unal, “Evaluation of Low-Power Long Distance Radio Communication in Urban Areas : LoRa and Impact of Spreading Factor,” IEEE, pp. 68–71, 2019.
“SX127X Mini Dev featuring LoRa® technology.” https://www.dragino.com/products/lora/item/126-lora-mini-dev.html (accessed Nov. 16, 2020).
A. Raj, “Interfacing SX1278 (Ra-02) LoRa Module with Arduino.” https://circuitdigest.com/microcontroller-projects/arduino-lora-sx1278-interfacing-tutorial (accessed Mar. 02, 2021).
“SW-420 Vibration Sensor Module,” Components 101, 2020. https://components101.com/sensors/sw-420-vibration-sensor-module (accessed Dec. 20, 2020).
U. Antenna, “A Review on Recent Ternds and Developments in the Design and Application A Review on Recent Ternds and Developments in the Design and Application of Yagi Uda Antenna,” no. September, 2015, doi: 10.9790/2834-10522834.
M. Abdulhamid, “ANALYSIS AND DESIGN OF 10-ELEMENT YAGI-UDA ANTENNA,” JOURNSL RADIO Electron., pp. 1–11, 2020, doi: 10.30898/1684-1719.2020.3.10.
A. Dennis, B. H. Wixom, and R. M. Roth, “System Analysis and Design 5th Edition,” USA: John Wiley & Sons, lnc., 2015.
Downloads
Submitted
Accepted
Published
Issue
Section
License
Copyright (c) 2023 Info Kripto
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.